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Abstract—Technical analysis is a method of using 

candlestick chart patterns to attempt to predict the 

price movement of a tradable asset, such as a stock or 

cryptocurrency. Many traders identify patterns 

manually due to the subjective nature of technical 

analysis. Using convolutional neural networks, the 

manual subjective pattern recognition process can be 

simulated and would be more generalized than hard 

coded or mathematical methods. The developed model 

identifies patterns with a 66% accuracy when 

compared to the hard-coded method. While this 

accuracy is not high enough to measure the level of 

generalization, this model could be used as a stock 

screener using automated pattern recognition. 

I. INTRODUCTION 

 Candlestick patterns have been used for centuries to 
predict price direction (Morris, 2006). Since their 
introduction into Western culture in 1991, there have been 
studies on the effectiveness of candlestick patterns of 
predicting future price trends. Most notably, a study by 
Bulkowski found that candlestick patterns can predict 
price movement between 50 and 60% of the time 
(Bulkowski, 2012). 50% is essentially random, but there 
are some specific patterns Bulkowski highlights, such as 
the bullish engulfing and bullish harami, that perform 
better than random, at 58% and 57% respectively. Both 
patterns are bullish continuation signals, meaning that they 
occur during an uptrend, and indicate the uptrend will 
continue. The performance measure is how often the 
uptrend continues after the pattern has been identified. 
Bulkowski is a prominent figure in a group of traders who 
base their trades primarily on candlestick patterns, which 
is a trading method known as Technical Analysis. 

 The goal of this project is to use machine vision to 
simulate the manual detection of candlestick patterns. 
Currently, it is possible to recognize these patterns using 
hardcoded methods, but technical analysis can be 
subjective, so these models do not always capture every 
occurrence of a pattern (Lo, Mamaysky, & Wang, 2000). 

This subjectivity is based on an individual’s visual 
interpretation of the chart patterns and inspired this 
project. The Convolutional Neural Network (CNN) 
derives from the process that occurs in the human eye to 
interpret visual signals (Fukushima, 1980). Since their 
inception CNN’s have been the top choice for many 
machine vision problems. 

 There is a lot of existing research using CNNs for 
pattern recognition, with a subset of that research being in 
the field of stock trading. CNNs and long short-term 
memory (LSTM) are regularly combined as they have 
some complimentary characteristics. CNNs are useful for 
extracting effective features from image data, while 
LSTM is useful for finding interdependence in time series 
data. A group of researchers used a CNN-LSTM model to 
predict the stock closing price on the next day (Lu et al., 
2020). This research used R2 as a success measure and 
produced a value of 0.9646. This CNN-LSTM model was 
the best of the models analyzed and was recommend for 
use when forecasting next day closing prices. 

 Much of the work in this paper builds off research 
around using deep learning to recognize stock chart 
patterns (Velay & Daniel, 2018). This research utilized 
both CNN and LSTM models to detect chart patterns on 
both candlestick charts and curve charts. The LSTM 
model produced 97% accuracy, while the CNN produced 
73% accuracy using the candlestick charts. The CNN 
results with the candlestick charts were 3% better than the 
curve charts. The previous research looked at charts with 
30-minute candlesticks, as opposed to daily candlesticks. 
It also looked at longer term patterns such as bearish flags 
and double bottoms, which can be 20+ candles long. 
Achieving similar CNN accuracy on daily candlesticks 
with the highlighted two-candle patterns of bullish 
engulfing and bullish harami would be a success. 
However, it is mentioned that the accuracy of 73% is not 
enough to compare the generalization of the model to the 
hard-coded method, which is something to keep in mind. 
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II. METHODOLOGY 

To conduct the analysis, the first necessity was stock 
market data. Four stock tickers were used in this analysis 
in order to provide a sufficient amount of data. These 
tickers are AAPL, F, MSFT, and SPY. The data for these 
tickers was collected using Wall Street Journal historical 
price data, and contains the open, high, low, and close 
(OHLC) prices for every day from January 1st, 1997, to 
December 31st, 2020. All four tickers have been trading 
since before 1997, and there are 6041 trading days in the 
chosen interval. With four tickers, this gives 24164 days 
of OHLC data. This is smaller than the MNIST 
handwritten integers dataset that is used for an 
introductory to CNNs, which contains 60000 images. 
However, the 24164 days should be a large enough dataset 
to work well with. 

Candlestick charts were generated from the OHLC 
values using matplotlib. An example is provided in Figure 
1. When the close price is above the open price the candle 
is green, and when the close price is below the open price 
the candle is red. The charts have 10 candles on them, 
which represent the open and close prices for 10 days. 
Charts were created for all four stocks starting at each day 
in the interval, which resulted in the creation of 24120 
charts. This was done to both lengthen the dataset as well 
as to assist the CNN in learning patterns invariable of 
location. For example, if the pattern was always on the left, 
the CNN would only expect the pattern to be on the left, 
when it is possible for the pattern to be present anywhere 
on the chart. 

 

Figure 1: Candlestick Chart Example 

The candlestick charts created were intentionally made 
to be low resolution with a black background to limit both 
the file size and complexity of the image. Limiting the file 

size was helpful when storing 24120 images, but the more 
important piece was limiting the complexity. Standard 
practice when using CNNs is to manipulate the input 
image data to simplify it without losing key features that 
make the images identifiable. One popular example is 
using CNNs to identify cats and dogs. In this example, 
instead of heavily reducing the resolution of the image, the 
image is input in grayscale to reduce complexity since cats 
and dogs can be discerned in grayscale nearly as easily as 
in full color. For the candlestick charts, grayscale does not 
work because the red and green candles are important 
identifiers for the pattern. However, the red and green 
candles are still easily identified in a low-resolution image, 
so that solution works nicely for this use case. It is also 
important to note that the black background helps to 
simplify the image for input into the CNN. The ‘border’ 
around the chart is constant as well, meaning the 10 
candles will always appear centered both horizontally and 
vertically on the image. There will never be a candle near 
the edge of an image, so the model will always know 
where to look. This concept is well discussed in the 
MNIST introduction to CNNs, as the handwritten integers 
are centered and oriented properly to minimize the 
variation in model inputs. 

With the candlestick charts created and ready to use in 
the CNN as the features, the next requirement is labels. For 
this, the images were classified into four groups: bullish 
engulfing (Figure 2), bullish harami (Figure 3), both 
patterns, and no pattern. The pattern presence was 
determined using a hard coded method based on the 
mathematical definitions of these patterns (Morris, 2006). 
This is the simplest way to label 24120 days of data and is 
a standard practice for implementing the known truth in 
technical analysis (Velay & Daniel, 2018; see also Lu et 
al., 2020). One issue with this method is that there is not a 
known truth when it comes to technical analysis. 

 

Figure 2: Bullish Engulfing Pattern Description 
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Figure 3: Bullish Harami Pattern Description 

Once the features and response were prepared, the data 
was shuffled, and then split into a training set and a 
validation set. 80% of the data was used for training, with 
the other 20% left for validation. In both the training and 
validation sets, there were approximately 48% of images 
containing no pattern, 20% of images containing a bullish 
engulfing, 26% of images containing a bullish harami, and 
6% of images containing both patterns. This is a sufficient 
distribution of data between classifiers, as the CNN will 
not be able obtain a high accuracy by guessing there is no 
pattern for every image. It is also important the both the 
training and validation sets contain close to the same 
proportions of each identifier, as it would be undesirable 
for the model to learn that approximately 20% of the 
images contain a bullish engulfing, and then when 
presented with new data that is 35% for example. 

The creation of a CNN involves making some 
decisions about architecture. The main building block of a 
CNN is a convolutional layer, which consists of filters that 
help the CNN learn. The network learns filters that 
activate when a specific type of feature is detected in a 
portion of the input (Géron, 2017). In this case, the CNN 
uses filters to learn if a pattern is detected on a specific part 
of the chart. After each convolutional layer, an activation 
function is used, and most commonly this is the ReLU 
function. The ReLU effectively removes negative values 
from an activation map by setting them to zero 
(Romanuke, 2017). This adds non-linearity to the decision 
function which helps improve network accuracy. 

Another element of CNN architecture is the pooling 
layer. Pooling is a form of non-linear down-sampling, 
which helps with generalization. To the CNN, the exact 
location of a feature is less important than the rough 
location relative to other features. Max pooling is the most 
common type of pooling, and as with all types of pooling, 
helps reduce the number of parameters (Figure 4). This 
reduction of parameters also helps combat overfitting. 

After some combination of convolutional and pooling 
layers, a CNN will have a flattened, fully connected layer, 
as present in a typical artificial neural network. Finally, 
there is a loss layer which penalizes the model for 
incorrect identifications. 

 

Figure 4: Max Pooling Example 

 The CNN architecture used for this model can be seen 
in Figure 5. This model uses a convolutional layer, 
followed by a pooling layer. The pooling layers use max 
pooling with a 2x2 filter and a stride of 2, as shown in the 
example in Figure 4.  

 

Figure 5: CNN Architecture Used 

 This combination of convolutional layer and pooling 
layer repeats, and then is flattened into a dense layer, and 
then finally a loss layer. This loss layer uses the Sigmoid 
activation function because it is the most useful for multi-
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class classification. The input of this model is the 
candlestick charts, as well as the label (bullish engulfing 
[1,0], bullish harami [0,1], both patterns [1,1], and no 
pattern [0,0]). Since this model uses the sigmoid loss 
function, the output of this model is 2 probability values 
for each of the patterns. If for a single chart the model 
outputs [0.05, 0.82], it would mean that the model is 5% 
confident there is a bullish engulfing, and 82% confident 
there is a bullish harami present in the image. The chart 
would be classified as bullish harami. If the actual label is 
[0,1], this would be a success, and if it is anything else, it 
would be a misclassification. The measure of success of 
this model is the accuracy at which it classifies the images, 
as a percentage of correctly classified images vs all 
observed images. 

 This model uses the Adam optimizer, a learning rate of 
0.001, a beta 1 decay rate of 0.9, and a beta 2 decay rate of 
0.999. These are the default hyperparameters associated 
with the Adam optimizer and are recommended for use to 
those who are new to implementing CNNs.  

III. RESULTS AND DISCUSSION 

The results of this model nearly met the established 
hypothesis of 73% accuracy derived from previous 
research. With 10 epochs, the training accuracy of the 
model was 69.84%, with a validation accuracy of 64.32% 
(Figure 6). This falls slightly short of the desired 73% but 
shows some promise. Some tweaking of the 
hyperparameters of this model such as the optimizer, 
learning rate, and decay rates could potentially improve 
this model to meet or exceed the 73% accuracy shown in 
prior work. 

 

Figure 6: Training Accuracy 

 Over the course of 10 epochs, the accuracy of both the 
training and validation sets are somewhat correlated. The 
same cannot be said for the loss. The training and 
validation loss values begin to diverge after 2 or 3 epochs 

(Figure 7). This is a classic sign of overfitting. The 
training loss is being minimized by the model, and it is 
beginning to memorize the training data. This leads to a 
decrease in the training loss, but an increase in validation 
loss. Overfitting prohibits the model from accurately 
predicting new data and should be avoided or corrected. 

 

Figure 7: Training Loss 

There are a few ways to counteract overfitting when 
working with CNNs. The easiest method is to look at the 
model when validation loss is the lowest, which is usually 
where the training and test loss diverges. In this case, that 
is with 5 epochs and a validation loss of 0.391. At this 
point, the model has a training accuracy of 65.24 % and a 
validation accuracy of 66.29%. This model does a better 
job of generalizing the data, with a better validation 
accuracy than the model at 10 epochs. Another way to 
counteract overfitting would be to introduce dropout 
layers to the model, which effectively nullify the 
contribution of some neurons towards the next layer at 
random. This prevents all neurons in a layer from 
synchronously optimizing their weights. Dropout layers 
are frequently used with small datasets since they are 
easier for a neural network to memorize but they are also 
useful with large datasets such as this one to combat 
overfitting. 

A difficult part of interpreting the results of this model 
is that the accuracy is compared to the hard coded, 
mathematically identified pattern. Ideally, the network 
would be able to learn from a dataset of patterns identified 
by a group of renowned technical analysis traders. This 
would allow the model to learn to identify patterns that do 
not perfectly fit the mathematical definition, but still 
classify as an example of a pattern in the eyes of traders. 
However, a perfect dataset like this does not exist, so the 
hardcoded method is the next best choice. 

The lack of a perfect dataset also limited the scope of 
this project, as there are more historically successful 
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patterns than those that were analyzed. Bulkowski has a 
rank of small patterns with respect to upward breakout 
performance, and bullish engulfing and bullish harami 
rank 6th and 10th on that list respectively. However, these 
two patterns are relatively simple to identify with a hard 
coded method compared to the top performing pattern, 
downside weekly reversal. This pattern looks at weekly 
charts and is much more subjective in nature than the 
bullish harami and bullish engulfing. This type of pattern 
highlights the impact of the lack of a ground truth when it 
comes to technical analysis pattern recognition. 

IV. CONCLUSION 

 The results of this modeling process are promising but 
are a few improvements away from being useful enough 
to use for technical analysis trading. With an accuracy of 
less than 70%, this model produces large quantities of both 
false negatives and false positives. In the case of a trader, 
false negatives are missed trading opportunities. False 
positives waste a trader’s time looking for a pattern that is 
not there or waste a traders money trading on a bullish 
pattern that was not truly present. One improvement to this 
model would be to minimize false positives by penalizing 
the model for incorrectly predicting a pattern when it is not 
present. 

 This large number of false negatives and false positives 
also makes it difficult to quantify the ability of this model 
to generalize compared to the hard coded method. With a 
smaller quantity of false positives, they could be 
individually inspected. It is possible that the model is 
identifying some instances of patterns that are not captured 
using mathematical methods, but there is no way to know 
for sure with so many false positives. This would be a high 
priority improvement as this generalization is a key reason 
that one would use CNNs for this task. 

 Another area for improvement with this model is to 
introduce the overfitting counteraction measures that were 
previously discussed. Adding dropout layers would 
improve the model’s ability to generalize and reduce the 
memorization of training data that is taking place. This 
would improve the validation loss and allow for more 
epochs to take place before the model begins detrimentally 
overfitting. 

 A possible next step for this research would be to 
investigate the model’s ability to identify other technical 
analysis patterns. Some tweaking would be needed to 
incorporate new patterns depending on the length of the 
pattern, but otherwise the model would most likely have 
similar or slightly worse performance. One issue with 
other patterns is that they are far less prevalent than the 
patterns used in this research. The most effective bearish 
pattern according to Bulkowski, called Three Black 
Crows, had 3 occurrences in the selected stocks since 

1997. This extremely small sample size would most likely 
cause the model to never predict the presence of this 
pattern. To incorporate many different patterns, some data 
manipulation may be necessary to create enough training 
data to have success. 

 Similarly, another step would be to use this model to 
identify patterns with different candle frequencies. Some 
traders will look at the charts with weekly candlesticks, 
daily candlesticks (used in this paper), and hourly 
candlesticks. This would just require access to the data at 
different frequencies and would be as simple as changing 
the data source. The model input would still be the 10-
candle chart, so the transition should theoretically be 
seamless, but would need further testing to verify. If this 
model were to have similar performance on other 
candlestick frequencies, it could be used by all types of 
traders, from swing traders to day traders. 

 If this model were improved enough to be trusted and 
identify patterns that are not found using hard coded 
methods, there would be many use cases for stock traders. 
The simplest use case would be to use this model as a stock 
screener to identify possible trades. The trader could input 
as many tickers as they are interested in trading, and the 
model would generate charts and be able to identify bullish 
or bearish patterns. The relevant charts could be displayed 
to the trader for them to make the final trading decision. 

 With enough trust in the model and technical analysis 
patterns, this ideal model could be used in a framework 
that automatically triggers trades. Ideally that framework 
includes some form of sentiment analysis to capture news, 
as well as an LSTM model to work with forecasting the 
raw time series data. If the patterns from the CNN, forecast 
from the LSTM, and output from the sentiment analysis 
are all bullish, a purchase order could be placed. 

 This project could be utilized for a variety of 
applications if the current shortcomings are addressed. 
This would require further research into limiting the 
overfitting, and would require higher quality input data, 
which may also have something to do with the overfitting. 
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