
1

Techincal Analysis Pattern Recognition Using

Convolutional Neural Networks

TREVOR MARTIN ROCHESTER INSTITUTE OF TECHNOLOGY

INDUSTRIAL AND SYSTEMS ENGINEERING ROCHESTER, NY TMM4038@RIT.EDU

Abstract—Technical analysis is a method of using

candlestick chart patterns to attempt to predict the

price movement of a tradable asset, such as a stock or

cryptocurrency. Many traders identify patterns

manually due to the subjective nature of technical

analysis. Using convolutional neural networks, the

manual subjective pattern recognition process can be

simulated and would be more generalized than hard

coded or mathematical methods. The developed model

identifies patterns with a 66% accuracy when

compared to the hard-coded method. While this

accuracy is not high enough to measure the level of

generalization, this model could be used as a stock

screener using automated pattern recognition.

I. INTRODUCTION

 Candlestick patterns have been used for centuries to
predict price direction (Morris, 2006). Since their
introduction into Western culture in 1991, there have been
studies on the effectiveness of candlestick patterns of
predicting future price trends. Most notably, a study by
Bulkowski found that candlestick patterns can predict
price movement between 50 and 60% of the time
(Bulkowski, 2012). 50% is essentially random, but there
are some specific patterns Bulkowski highlights, such as
the bullish engulfing and bullish harami, that perform
better than random, at 58% and 57% respectively. Both
patterns are bullish continuation signals, meaning that they
occur during an uptrend, and indicate the uptrend will
continue. The performance measure is how often the
uptrend continues after the pattern has been identified.
Bulkowski is a prominent figure in a group of traders who
base their trades primarily on candlestick patterns, which
is a trading method known as Technical Analysis.

 The goal of this project is to use machine vision to
simulate the manual detection of candlestick patterns.
Currently, it is possible to recognize these patterns using
hardcoded methods, but technical analysis can be
subjective, so these models do not always capture every
occurrence of a pattern (Lo, Mamaysky, & Wang, 2000).

This subjectivity is based on an individual’s visual
interpretation of the chart patterns and inspired this
project. The Convolutional Neural Network (CNN)
derives from the process that occurs in the human eye to
interpret visual signals (Fukushima, 1980). Since their
inception CNN’s have been the top choice for many
machine vision problems.

 There is a lot of existing research using CNNs for
pattern recognition, with a subset of that research being in
the field of stock trading. CNNs and long short-term
memory (LSTM) are regularly combined as they have
some complimentary characteristics. CNNs are useful for
extracting effective features from image data, while
LSTM is useful for finding interdependence in time series
data. A group of researchers used a CNN-LSTM model to
predict the stock closing price on the next day (Lu et al.,
2020). This research used R2 as a success measure and
produced a value of 0.9646. This CNN-LSTM model was
the best of the models analyzed and was recommend for
use when forecasting next day closing prices.

 Much of the work in this paper builds off research
around using deep learning to recognize stock chart
patterns (Velay & Daniel, 2018). This research utilized
both CNN and LSTM models to detect chart patterns on
both candlestick charts and curve charts. The LSTM
model produced 97% accuracy, while the CNN produced
73% accuracy using the candlestick charts. The CNN
results with the candlestick charts were 3% better than the
curve charts. The previous research looked at charts with
30-minute candlesticks, as opposed to daily candlesticks.
It also looked at longer term patterns such as bearish flags
and double bottoms, which can be 20+ candles long.
Achieving similar CNN accuracy on daily candlesticks
with the highlighted two-candle patterns of bullish
engulfing and bullish harami would be a success.
However, it is mentioned that the accuracy of 73% is not
enough to compare the generalization of the model to the
hard-coded method, which is something to keep in mind.

2

II. METHODOLOGY

To conduct the analysis, the first necessity was stock
market data. Four stock tickers were used in this analysis
in order to provide a sufficient amount of data. These
tickers are AAPL, F, MSFT, and SPY. The data for these
tickers was collected using Wall Street Journal historical
price data, and contains the open, high, low, and close
(OHLC) prices for every day from January 1st, 1997, to
December 31st, 2020. All four tickers have been trading
since before 1997, and there are 6041 trading days in the
chosen interval. With four tickers, this gives 24164 days
of OHLC data. This is smaller than the MNIST
handwritten integers dataset that is used for an
introductory to CNNs, which contains 60000 images.
However, the 24164 days should be a large enough dataset
to work well with.

Candlestick charts were generated from the OHLC
values using matplotlib. An example is provided in Figure
1. When the close price is above the open price the candle
is green, and when the close price is below the open price
the candle is red. The charts have 10 candles on them,
which represent the open and close prices for 10 days.
Charts were created for all four stocks starting at each day
in the interval, which resulted in the creation of 24120
charts. This was done to both lengthen the dataset as well
as to assist the CNN in learning patterns invariable of
location. For example, if the pattern was always on the left,
the CNN would only expect the pattern to be on the left,
when it is possible for the pattern to be present anywhere
on the chart.

Figure 1: Candlestick Chart Example

The candlestick charts created were intentionally made
to be low resolution with a black background to limit both
the file size and complexity of the image. Limiting the file

size was helpful when storing 24120 images, but the more
important piece was limiting the complexity. Standard
practice when using CNNs is to manipulate the input
image data to simplify it without losing key features that
make the images identifiable. One popular example is
using CNNs to identify cats and dogs. In this example,
instead of heavily reducing the resolution of the image, the
image is input in grayscale to reduce complexity since cats
and dogs can be discerned in grayscale nearly as easily as
in full color. For the candlestick charts, grayscale does not
work because the red and green candles are important
identifiers for the pattern. However, the red and green
candles are still easily identified in a low-resolution image,
so that solution works nicely for this use case. It is also
important to note that the black background helps to
simplify the image for input into the CNN. The ‘border’
around the chart is constant as well, meaning the 10
candles will always appear centered both horizontally and
vertically on the image. There will never be a candle near
the edge of an image, so the model will always know
where to look. This concept is well discussed in the
MNIST introduction to CNNs, as the handwritten integers
are centered and oriented properly to minimize the
variation in model inputs.

With the candlestick charts created and ready to use in
the CNN as the features, the next requirement is labels. For
this, the images were classified into four groups: bullish
engulfing (Figure 2), bullish harami (Figure 3), both
patterns, and no pattern. The pattern presence was
determined using a hard coded method based on the
mathematical definitions of these patterns (Morris, 2006).
This is the simplest way to label 24120 days of data and is
a standard practice for implementing the known truth in
technical analysis (Velay & Daniel, 2018; see also Lu et
al., 2020). One issue with this method is that there is not a
known truth when it comes to technical analysis.

Figure 2: Bullish Engulfing Pattern Description

3

Figure 3: Bullish Harami Pattern Description

Once the features and response were prepared, the data
was shuffled, and then split into a training set and a
validation set. 80% of the data was used for training, with
the other 20% left for validation. In both the training and
validation sets, there were approximately 48% of images
containing no pattern, 20% of images containing a bullish
engulfing, 26% of images containing a bullish harami, and
6% of images containing both patterns. This is a sufficient
distribution of data between classifiers, as the CNN will
not be able obtain a high accuracy by guessing there is no
pattern for every image. It is also important the both the
training and validation sets contain close to the same
proportions of each identifier, as it would be undesirable
for the model to learn that approximately 20% of the
images contain a bullish engulfing, and then when
presented with new data that is 35% for example.

The creation of a CNN involves making some
decisions about architecture. The main building block of a
CNN is a convolutional layer, which consists of filters that
help the CNN learn. The network learns filters that
activate when a specific type of feature is detected in a
portion of the input (Géron, 2017). In this case, the CNN
uses filters to learn if a pattern is detected on a specific part
of the chart. After each convolutional layer, an activation
function is used, and most commonly this is the ReLU
function. The ReLU effectively removes negative values
from an activation map by setting them to zero
(Romanuke, 2017). This adds non-linearity to the decision
function which helps improve network accuracy.

Another element of CNN architecture is the pooling
layer. Pooling is a form of non-linear down-sampling,
which helps with generalization. To the CNN, the exact
location of a feature is less important than the rough
location relative to other features. Max pooling is the most
common type of pooling, and as with all types of pooling,
helps reduce the number of parameters (Figure 4). This
reduction of parameters also helps combat overfitting.

After some combination of convolutional and pooling
layers, a CNN will have a flattened, fully connected layer,
as present in a typical artificial neural network. Finally,
there is a loss layer which penalizes the model for
incorrect identifications.

Figure 4: Max Pooling Example

 The CNN architecture used for this model can be seen
in Figure 5. This model uses a convolutional layer,
followed by a pooling layer. The pooling layers use max
pooling with a 2x2 filter and a stride of 2, as shown in the
example in Figure 4.

Figure 5: CNN Architecture Used

 This combination of convolutional layer and pooling
layer repeats, and then is flattened into a dense layer, and
then finally a loss layer. This loss layer uses the Sigmoid
activation function because it is the most useful for multi-

4

class classification. The input of this model is the
candlestick charts, as well as the label (bullish engulfing
[1,0], bullish harami [0,1], both patterns [1,1], and no
pattern [0,0]). Since this model uses the sigmoid loss
function, the output of this model is 2 probability values
for each of the patterns. If for a single chart the model
outputs [0.05, 0.82], it would mean that the model is 5%
confident there is a bullish engulfing, and 82% confident
there is a bullish harami present in the image. The chart
would be classified as bullish harami. If the actual label is
[0,1], this would be a success, and if it is anything else, it
would be a misclassification. The measure of success of
this model is the accuracy at which it classifies the images,
as a percentage of correctly classified images vs all
observed images.

 This model uses the Adam optimizer, a learning rate of
0.001, a beta 1 decay rate of 0.9, and a beta 2 decay rate of
0.999. These are the default hyperparameters associated
with the Adam optimizer and are recommended for use to
those who are new to implementing CNNs.

III. RESULTS AND DISCUSSION

The results of this model nearly met the established
hypothesis of 73% accuracy derived from previous
research. With 10 epochs, the training accuracy of the
model was 69.84%, with a validation accuracy of 64.32%
(Figure 6). This falls slightly short of the desired 73% but
shows some promise. Some tweaking of the
hyperparameters of this model such as the optimizer,
learning rate, and decay rates could potentially improve
this model to meet or exceed the 73% accuracy shown in
prior work.

Figure 6: Training Accuracy

 Over the course of 10 epochs, the accuracy of both the
training and validation sets are somewhat correlated. The
same cannot be said for the loss. The training and
validation loss values begin to diverge after 2 or 3 epochs

(Figure 7). This is a classic sign of overfitting. The
training loss is being minimized by the model, and it is
beginning to memorize the training data. This leads to a
decrease in the training loss, but an increase in validation
loss. Overfitting prohibits the model from accurately
predicting new data and should be avoided or corrected.

Figure 7: Training Loss

There are a few ways to counteract overfitting when
working with CNNs. The easiest method is to look at the
model when validation loss is the lowest, which is usually
where the training and test loss diverges. In this case, that
is with 5 epochs and a validation loss of 0.391. At this
point, the model has a training accuracy of 65.24 % and a
validation accuracy of 66.29%. This model does a better
job of generalizing the data, with a better validation
accuracy than the model at 10 epochs. Another way to
counteract overfitting would be to introduce dropout
layers to the model, which effectively nullify the
contribution of some neurons towards the next layer at
random. This prevents all neurons in a layer from
synchronously optimizing their weights. Dropout layers
are frequently used with small datasets since they are
easier for a neural network to memorize but they are also
useful with large datasets such as this one to combat
overfitting.

A difficult part of interpreting the results of this model
is that the accuracy is compared to the hard coded,
mathematically identified pattern. Ideally, the network
would be able to learn from a dataset of patterns identified
by a group of renowned technical analysis traders. This
would allow the model to learn to identify patterns that do
not perfectly fit the mathematical definition, but still
classify as an example of a pattern in the eyes of traders.
However, a perfect dataset like this does not exist, so the
hardcoded method is the next best choice.

The lack of a perfect dataset also limited the scope of
this project, as there are more historically successful

5

patterns than those that were analyzed. Bulkowski has a
rank of small patterns with respect to upward breakout
performance, and bullish engulfing and bullish harami
rank 6th and 10th on that list respectively. However, these
two patterns are relatively simple to identify with a hard
coded method compared to the top performing pattern,
downside weekly reversal. This pattern looks at weekly
charts and is much more subjective in nature than the
bullish harami and bullish engulfing. This type of pattern
highlights the impact of the lack of a ground truth when it
comes to technical analysis pattern recognition.

IV. CONCLUSION

 The results of this modeling process are promising but
are a few improvements away from being useful enough
to use for technical analysis trading. With an accuracy of
less than 70%, this model produces large quantities of both
false negatives and false positives. In the case of a trader,
false negatives are missed trading opportunities. False
positives waste a trader’s time looking for a pattern that is
not there or waste a traders money trading on a bullish
pattern that was not truly present. One improvement to this
model would be to minimize false positives by penalizing
the model for incorrectly predicting a pattern when it is not
present.

 This large number of false negatives and false positives
also makes it difficult to quantify the ability of this model
to generalize compared to the hard coded method. With a
smaller quantity of false positives, they could be
individually inspected. It is possible that the model is
identifying some instances of patterns that are not captured
using mathematical methods, but there is no way to know
for sure with so many false positives. This would be a high
priority improvement as this generalization is a key reason
that one would use CNNs for this task.

 Another area for improvement with this model is to
introduce the overfitting counteraction measures that were
previously discussed. Adding dropout layers would
improve the model’s ability to generalize and reduce the
memorization of training data that is taking place. This
would improve the validation loss and allow for more
epochs to take place before the model begins detrimentally
overfitting.

 A possible next step for this research would be to
investigate the model’s ability to identify other technical
analysis patterns. Some tweaking would be needed to
incorporate new patterns depending on the length of the
pattern, but otherwise the model would most likely have
similar or slightly worse performance. One issue with
other patterns is that they are far less prevalent than the
patterns used in this research. The most effective bearish
pattern according to Bulkowski, called Three Black
Crows, had 3 occurrences in the selected stocks since

1997. This extremely small sample size would most likely
cause the model to never predict the presence of this
pattern. To incorporate many different patterns, some data
manipulation may be necessary to create enough training
data to have success.

 Similarly, another step would be to use this model to
identify patterns with different candle frequencies. Some
traders will look at the charts with weekly candlesticks,
daily candlesticks (used in this paper), and hourly
candlesticks. This would just require access to the data at
different frequencies and would be as simple as changing
the data source. The model input would still be the 10-
candle chart, so the transition should theoretically be
seamless, but would need further testing to verify. If this
model were to have similar performance on other
candlestick frequencies, it could be used by all types of
traders, from swing traders to day traders.

 If this model were improved enough to be trusted and
identify patterns that are not found using hard coded
methods, there would be many use cases for stock traders.
The simplest use case would be to use this model as a stock
screener to identify possible trades. The trader could input
as many tickers as they are interested in trading, and the
model would generate charts and be able to identify bullish
or bearish patterns. The relevant charts could be displayed
to the trader for them to make the final trading decision.

 With enough trust in the model and technical analysis
patterns, this ideal model could be used in a framework
that automatically triggers trades. Ideally that framework
includes some form of sentiment analysis to capture news,
as well as an LSTM model to work with forecasting the
raw time series data. If the patterns from the CNN, forecast
from the LSTM, and output from the sentiment analysis
are all bullish, a purchase order could be placed.

 This project could be utilized for a variety of
applications if the current shortcomings are addressed.
This would require further research into limiting the
overfitting, and would require higher quality input data,
which may also have something to do with the overfitting.

6

V. WORKS CITED

 Bulkowski, T. N. (2012). Encyclopedia of
Candlestick Charts. Germany: Wiley.

 Fukushima, K. (1980). Neocognitron: A self-
organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4), 193–202.

 Géron, A. (2017). Hands-On Machine Learning with
Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. United
States: O'Reilly Media.

 Lo, A.W., Mamaysky, H. and Wang, J. (2000),
Foundations of Technical Analysis: Computational
Algorithms, Statistical Inference, and Empirical
Implementation. The Journal of Finance, 55: 1705-1765.

 Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A
CNN-LSTM-Based Model to Forecast Stock Prices.
Complexity, 2020, 1–10.

 Morris, G. L. (2006). Candlestick Charting Explained:
Timeless Techniques for Trading Stocks and
Sutures. Ukraine: McGraw-Hill Education.

 Romanuke, V. (2017). Appropriate Number and
Allocation of RELUS in Convolutional Neural Networks.
Research Bulletin of the National Technical University of
Ukraine “Kyiv Politechnic Institute,” 0(1), 69–78.

 Velay, M., & Daniel, F. (2018). Stock Chart Pattern
recognition with Deep Learning. Artificial Intelligence
Department of Lusis.

